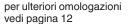
Termocoppia versione diritta per DIN 50446 Per misure di alte temperature Serie TC80

Scheda tecnica WIKA TE 65.80

- Altiforni, preriscaldatori
- Processi di tempra e trattamento termico
- Scarti, biomasse e incenerimento di rifiuti pericolosi
- Grandi impianti di riscaldamento, generazione di calore, tecnica energetica, reattori
- Industria del vetro, della porcellana e della ceramica, produzione di cemento e mattoni


Caratteristiche distintive

- Campi di applicazione fino a max. 1.700 °C [3.100 °F]
 (DIN EN 50446 [ASTM E230])
- Pozzetto termometrico in acciaio o ceramica termostabile, anche con tubo interno in ceramica
- Tubo di supporto in acciai diversi
- Attacco al processo a tenuta di gas
- Rivestimenti (opzione)

Descrizione

Le termocoppie della serie modello TC80 sono state sviluppate per misurare temperature estremamente elevate. Queste termocoppie per alte temperature sono conformi al DIN EN 50446. I cavi termoelettrici della termocoppia installata nel pozzetto termometrico sono contenuti nei fori capillari del tubo isolante in ceramica oppure nei fori capillari di una barra isolante. Un pozzetto termometrico costruito in lega di metallo per alte temperature o ceramica per alte temperature, con o senza tubo interno supplementare, protegge la termocoppia dal fluido di processo oltre che da danni meccanici o chimici.

Un'ampia gamma di attacchi al processo, es. flange di arresto, collari filettati e flange saldate, permettono il montaggio diretto al processo. Per applicazioni particolarmente critiche sono previsti modelli con gas inerte

Termocoppie diritte della serie modello TC80

o aria compressa, oppure con saldatura a tenuta stagna. Naturalmente, possono essere usati anche assemblaggi con pozzetti estremamente robusti.

Opzionalmente è possibile installare un trasmettitore. Uno dei vantaggi di un trasmettitore incorporato è la migliorata affidabilità della trasmissione del segnale. Tra il trasmettitore e la sala quadri di controllo può essere usato un cavo in rame più economico invece di un cavo specifico per termocoppia o di un cavo compensato. Un giunto freddo è integrato in tutti i trasmettitori WIKA.

Scheda tecnica WIKA TE 65.80 · 11/2020

Pagina 1 di 12

Sensore

Tipi di sensore

Tipo	Valore di tolleranza	Classe	Campo di temperatura
K	IEC 60584-1	1	-40 +1.000 °C
N		2	-40 +1.200 °C
	ASTM E230	Speciale	0 1.260 °C
		Standard	0 1.260 °C
J	IEC 60584-1	1	-40 +750 °C
		2	-40 +750 °C
	ASTM E230	Speciale	0 760 °C
		Standard	0 760 °C
E	IEC 60584-1	1	-40 +800 °C
		2	-40 +900 °C
	ASTM E230	Speciale	0 870 °C
		Standard	0 870 °C
R	IEC 60584-1	1	0 1.600 °C
S		2	0 1.600 °C
	ASTM E230	Speciale	0 1.480 °C
		Standard	0 1.480 °C
В	IEC 60584-1	2	600 1.700 °C
		3	600 1.700 °C
	ASTM E230	Speciale	-
		Standard	870 1.700 °C

Valore di tolleranza

Per la definizione del valore di tolleranza delle termocoppie, si è partiti da una temperatura del giunto freddo di 0 °C.

Per informazioni dettagliate sulle termocoppie, fare riferimento alla Informazione Tecnica IN 00.23 disponibile sul sito www.wika.it.

I modelli elencati sono disponibili come termocoppie sia singole che doppie. La termocoppia viene fornita con il giunto caldo isolato, a meno che non venga altrimenti specificato.

Il campo di applicazione di queste sonde è limitato sia dalla massima temperatura ammessa della termocoppia sia dalla massima temperatura del materiale del pozzetto termometrico.

La stabilità a lungo termine delle termocoppie in metallo prezioso aumenta con l'incrementare del diametro del cavo termoelettrico. I sensori tipo S, R e B, sono disponibili con cavi termoelettrici di diametro da 0,35 mm o 0,5 mm.

Esecuzioni

A seconda della forma della testa di connessione e del gruppo materiali del pozzetto termometrico, la gamma di modelli è suddivisa nei seguenti modelli principali, secondo il DIN EN 50446: AM, AMK, BM, BMK, AK, AKK, BK

1. posizione

A = testa di connessione, forma A B = testa di connessione, forma B

2. posizione

M = pozzetto termometrico metallico C = pozzetto termometrico in ceramica

3. posizione

C = tubo interno in ceramica nessun 3° carattere significa: senza tubo interno

Versioni con pozzetto termometrico metallico

A seconda del materiale, la temperatura operativa superiore dei pozzetti termometrici in metallo può raggiungere i 1.200 °C.

Generalmente viene impiegata come sensore una termocoppia in metallo base (tipi K, J e N).

Versioni con pozzetto termometrico in ceramica

A seconda della ceramica usata, il limite superiore della temperatura operativa nei pozzetti termometrici in ceramica può arrivare fino a 1.600 °C, con temperature superiori su richiesta. Generalmente viene impiegata come sensore una termocoppia in metallo prezioso (tipi R, S e B).

Per la misura di temperature superiori a 1.200 °C, possono essere impiegate come sensore solamente termocoppie in metallo prezioso.

Con le termocoppie in metallo prezioso, sussiste tuttavia un rischio di "avvelenamento" da contaminazione. Il rischio incrementa con l'aumento della temperatura. Pertanto, con temperature superiori a 1.200 °C, andrebbero usate ceramiche a tenuta di gas, preferibilmente C 799 ad alta purezza (vedi "Osservazioni sulla selezione e il funzionamento dei pozzetti termometrici").

L'attacco al processo è progettato per essere a tenuta di gas fino a 1 bar. Con gas di processo tossici o sicurezza critica, o in condizioni speciali d'installazione, si raccomanda di prendere ulteriori misure costruttive in aggiunta alle caratteristiche standard, in modo tale da evitare qualsiasi fuoriuscita di fluido dalla testa di connessione, in caso di rottura del pozzetto termometrico (es. passante a tenuta di pressione nella testa di connessione).

Panoramica dei modelli e dimensioni

Dimensioni in mm per esecuzioni standard

Esecuzione AK conforme a DIN EN 50446

- Testa di connessione, forma A
- Pozzetto termometrico in ceramica
- Tubo di supporto metallico

Dimensioni per versioni con diametro pozzetto termometrico ≥ 26 mm

A Lunghezza nominale 500, 710, 1.000, 1.400, 2.000 1)

ØF Pozzetto termometrico 26 (SIC, C 530)

Ø esterno

N Lunghezza tubo di 200 (standard)

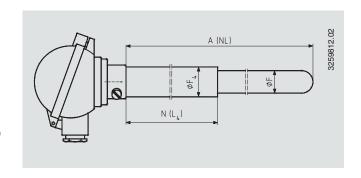
supporto

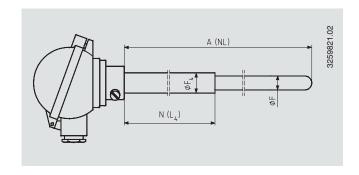
ØF₄ Ø tubo di supporto 32

1) Queste lunghezze nominali (e lunghezze superiori) con termocoppie in metallo prezioso inserite non sono adatte per l'installazione ad angolo retto.

Dimensioni per versioni con diametro pozzetto termometrico < 26 mm

A Lunghezza nominale 500, 710, 1.000 o 1.400


ØF Pozzetto termometrico 15, 16 (C 610)


Ø esterno

N Lunghezza tubo di 150 (standard)

supporto

ØF₄ Ø tubo di supporto 22

Esecuzione AKK conforme a DIN EN 50446

- Testa di connessione, forma A
- Pozzetto termometrico in ceramica
- Tubo di supporto metallico
- Tubo interno in ceramica

Dimensioni per versioni con diametro pozzetto termometrico ≥ 26 mm

A Lunghezza nominale 500, 710, 1.000 o 1.400

ØF Pozzetto termometrico 26 (SIC, C 530)

Ø esterno

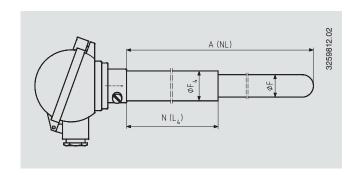
N Lunghezza tubo di 200 (standard)

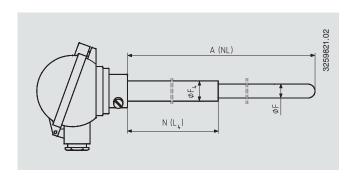
supporto

ØF₄ Ø tubo di supporto 32

Dimensioni per versioni con diametro pozzetto termometrico < 26 mm

A Lunghezza nominale 500, 710, 1.000 o 1.400


ØF Pozzetto termometrico 15, 16 (C 610)

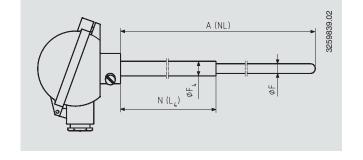

Ø esterno

N Lunghezza tubo di 150

supporto

ØF₄ Ø tubo di supporto 22

Esecuzione BK conforme a DIN EN 50446

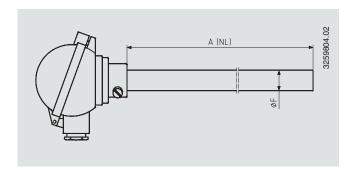

- Testa di connessione, forma B
- Pozzetto termometrico in ceramica
- Tubo di supporto metallico

A Lunghezza nominale 355, 500, 710, 1.000

ØF Pozzetto termometrico Ø 10

esterno

N Lunghezza tubo di supporto 80 $\varnothing F_4$ \varnothing tubo di supporto 15


Esecuzione AM / AMK conforme a DIN EN 50446

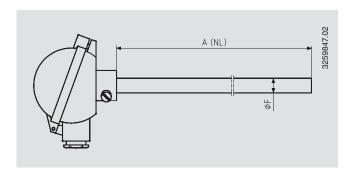
- Testa di connessione, forma A
- Pozzetto termometrico in metallo
- Tubo interno in ceramica (AMK)

A Lunghezza nominale 500, 710, 1.000, 1.400, 2.000 1)

ØF Pozzetto termometrico Ø 22 (24, 26) esterno

¹⁾ Queste lunghezze nominali (e lunghezze superiori) con termocoppie in metallo prezioso inserite non sono adatte per l'installazione ad angolo retto.

Esecuzione BM / BMK conforme a DIN EN 50446


- Testa di connessione, forma B
- Pozzetto termometrico in metallo
- Tubo interno in ceramica (BMK)

A Lunghezza nominale 355, 500, 710, 1.000, 1.400²⁾

ØF Pozzetto termometrico 15

Ø esterno

2) solo versione BM

Testa di connessione

	C
\mathbf{D}	3
_	_

BSZ

BSZ-H

BSS I

BSS-H

AS

ASZ

ASZ-H

Modello	Materiale	Uscita cavo	Grado di protezione	Coperchio	Superficie
BS	Alluminio	M20 x 1,5 1)	IP53	Coperchio con 2 viti	Blu, verniciato 2)
BSZ	Alluminio	M20 x 1,5 1)	IP53	Coperchio ribaltabile con vite a testa cilindrica	Blu, verniciato 2)
BSZ-H	Alluminio	M20 x 1,5 1)	IP53	Coperchio ribaltabile con vite a testa cilindrica	Blu, verniciato 2)
BSS	Alluminio	M20 x 1,5 1)	IP53	Coperchio ribaltabile con clip	Blu, verniciato 2)
BSS-H	Alluminio	M20 x 1,5 1)	IP53	Coperchio ribaltabile con clip	Blu, verniciato 2)
AS	Alluminio	M20 x 1,5 1)	IP53	Coperchio con 2 viti	Blu, verniciato 2)
ASZ	Alluminio	M20 x 1,5 1)	IP53	Coperchio ribaltabile con vite a testa cilindrica	Blu, verniciato 2)
ASZ-H	Alluminio	M20 x 1,5 1)	IP53	Coperchio ribaltabile con vite a testa cilindrica	Blu, verniciato 2)

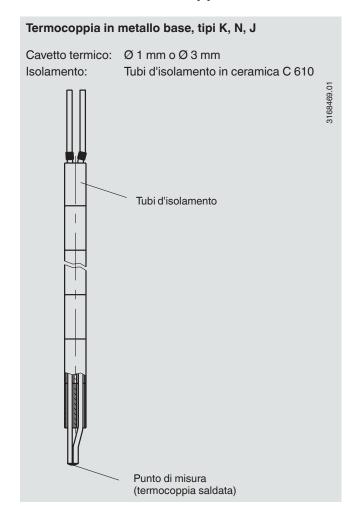
Esecuzioni con IP 65 grado di protezione su richiesta

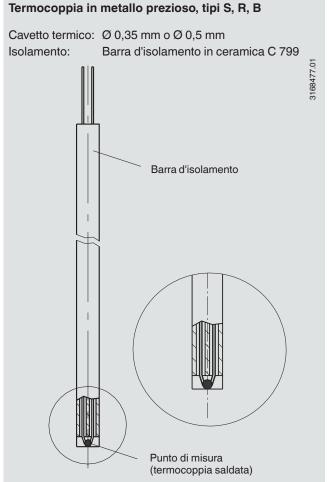
¹⁾ Standard

²⁾ RAL 5022

Trasmettitore (opzione)

Il trasmettitore può essere montato direttamente nella sonda di temperatura. Prestare attenzione alla temperatura ambiente consentita del trasmettitore in conformità con la scheda tecnica. Con una connessione diretta della termocoppia al trasmettitore, per via della convezione termica dei cavi termoelettrici, aumenta il rischio di un riscaldamento eccessivo dei terminali del trasmettitore. La termocoppia può essere anche connessa indirettamente al trasmettitore tramite un cavo di compensazione breve e sottile tra il blocchetto terminale e il trasmettitore.


Pertanto, il montaggio risultante nel coperchio della testa di connessione richiede una testa di connessione con un coperchio alto: testa ASZ-H per versioni AK, AM, AMK e AKK e testa BSZ-H o BSS-H per versioni BM, BMK e BK.


Testa di	Modello trasmettitore			
connessione	T32	T91	T53	
BS	-	-	-	
BSZ	-	-	-	
BSZ-H	•	•	•	
BSS	-	-	-	
BSS-H	•	•	•	
AS	-	-	-	
ASZ	-	-	-	
ASZ-H	•	•	•	

- Montato nel coperchio della testa di connessione
- Montaggio non possibile

Modello	Descrizione	Scheda tecnica
T32	Trasmettitore digitale, protocollo HART®	TE 32.04
T53	Trasmettitore digitale FOUNDATION™ Fieldbus e PROFIBUS® PA	TE 53.01
T91	Trasmettitore analogico, campo di misura fisso	TE 91.01

Versione della termocoppia

Versioni AM, AMK, BM e BMK

Pozzetto termometrico in metallo

Il pozzetto termometrico viene costruito con tubo conforme a DIN EN 50446 forma A (bombato) o forma C (piatto). Entrambe le versioni sono da considerare tecnicamente equivalenti. La selezione della forma base è di responsabilità del produttore.

Con i pozzetti termometrici in metallo smaltato, il fondo è sempre bombato. Il pozzetto termometrico viene premuto nella testa di connessione e bloccato.

Inoltre, offriamo la possibilità di avvitare la testa nel pozzetto termometrico. Ciò consente di ottenere la classe di protezione IP65. Un attacco al processo regolabile viene bloccato nel pozzetto termometrico consentendo una profondità d'immersione variabile.

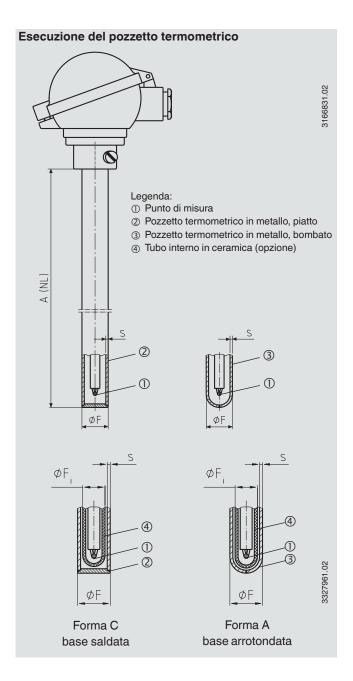
Sono preferibili le lunghezze nominali standard conformi a DIN EN 50446.

Lunghezze nominali standard

A = 500, 710, 1.000, 1.400, 2.000 mm Altri a richiesta

Materiali per pozzetti termometrici in metallo

Vedere "Note sulla selezione e il funzionamento di pozzetti termometrici"


Tubo interno (opzione)

Alle alte temperature, i pozzetti termometrici in metallo possono diventare porosi o incrostati.

Un tubo interno in ceramica a tenuta di gas protette la termocoppia dai gas aggressivi. Come risultato, da una parte si evitano modifiche delle proprietà termoelettriche della termocoppia, dall'altra parte si aumenta la vita utile della sonda di temperatura.

Materiali per tubo interno 1)

- Ceramica C 610 a tenuta di gas fino a 1.500 °C, non resistente ai vapori alcalini
- Ceramica C 799 a tenuta di gas, alta purezza fino a 1.600 °C, tuttavia solo parzialmente resistente ai cambiamenti di temperatura, non resistente ai vapori alcalini

Dimensioni in mm per il pozzetto termometrico e il tubo interno

Versione	Pozzetto t metallo	ermometrico in	Tubo interno in ceramica
	Ø esterno	Ø esterno Spessore (di parete)	
	ØF	s	Ø Fi
AM	22	2	15
ВМ	15	2	10

¹⁾ vedere "Note sulla selezione e il funzionamento di pozzetti termometrici"

Versioni AKK, AK e BK

Pozzetto termometrico in ceramica

I pozzetti termometrici in ceramica sono costruiti con ceramiche in ossido di alluminio cotte ad alta temperatura; la punta è chiusa ed emisferica. A causa della bassa resistente meccanica, viene impiegato un tubo metallico di supporto per fissare al termocoppia la connessione al processo. Il pozzetto termometrico in ceramica viene cementato nel tubo di supporto con un composto ceramico a prova di fuoco. Il tubo di supporto è inserito nella testa di connessione e bloccato.

Sono preferibili le lunghezze nominali standard conformi a DIN EN 50446.

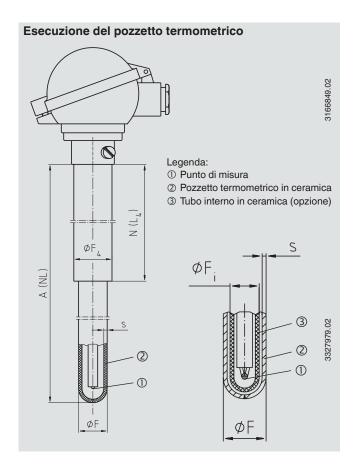
Lunghezze nominali standard

A = 355, 500, 710, 1.000, 1.400, 2.000 mm Altri a richiesta

Materiali per pozzetti termometrici in ceramica 1)

- La ceramica C 530 non è stagna al gas, è finemente porosa estremamente resistente ai cambi di temperatura, utilizzabile fino a 1.600 °C, non attaccabile dai gas. Usato come pozzetto termometrico esterno in combinazione con pozzetto termometrico interno a tenuta di gas.
- Ceramica C 610 a tenuta di gas utilizzabile fino a 1.500 °C, non resistente ai vapori alcalini
- Ceramica C 799 a tenuta di gas, alta purezza utilizzabile fino a 1.600 °C, tuttavia solo parzialmente resistente ai cambiamenti di temperatura, non resistente ai vapori alcalini

Altri materiali a richiesta


Tubo interno (opzionale, solo per versione AKK)

Se il pozzetto termometrico esterno della versione AKK viene selezionato da ceramica C530 non a tenuta di gas, va combinato con un tubo interno a tenuta di gas. Ciò protegge la termocoppia da gas aggressivi.

Come risultato, da una parte si evitano modifiche delle proprietà termoelettriche della termocoppia, dall'altra parte si aumenta la vita utile della sonda di temperatura.

Materiali per tubo interno 1)

- Ceramica C 610 a tenuta di gas fino a 1.500 °C, non resistente ai vapori alcalini
- Ceramica C 799 a tenuta di gas, alta purezza fino a 1.600 °C, tuttavia solo parzialmente resistente ai cambiamenti di temperatura, non resistente ai vapori alcalini

Dimensioni in mm per il pozzetto termometrico e il tubo interno

Pozzetto te ceramica	rmometrico in	Tubo interno in ceramica
Ø esterno Spessore (di parete)		Ø esterno
ØF	s	Ø Fi
26	2 - 4	15, 16
15, 16	2	10

Tubo di supporto

Materiale: acciaio al carbonio, acciaio inox Altri materiali a richiesta

Dimensioni in mm del tubo di supporto

Versione	Ø esterno	Lunghezza
	Ø F ₄	N (L ₄)
AK	32	200
	22	150
AKK	32	200
	22	150
ВК	15	150

¹⁾ vedere "Note sulla selezione e il funzionamento di pozzetti termometrici"

Versioni AM, AMK, BM e BMK

Pozzetto termometrico smaltato

Quando si utilizzano pozzetti termometrici smaltati, dovrebbe essere impiegato un manicotto filettato per prevenire che il rivestimento smaltato si danneggi.

Non a tenuta di gas

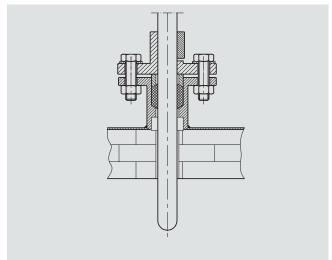
Una flangia di arresto è sufficiente, una flangia di accoppiamento non è necessaria. La flangia di arresto è regolabile sul pozzetto termometrico ed è assicurata con un morsetto.

Pertanto, la profondità di immersione della sonda è variabile e può essere facilmente regolata sul punto di montaggio

A tenuta di gas fino a 1 bar 1)

È necessario un manicotto filettato o una combinazione di flangia di arresto / flangia di accoppiamento.

Manicotto filettato:


Questo è fissato nel pozzetto termometrico in metallo con un morsetto. Quando viene allentato, è possibile la regolazione sul pozzetto termometrico. La profondità di immersione della sonda è variabile e può essere facilmente regolata sul punto di montaggio

Flangia di arresto / flangia di accoppiamento:

La guarnizione viene effettuata tramite un premistoppa tra la flangia di accoppiamento e il pozzetto termometrico. Viene fissata con un morsetto tra la flangia di arresto e il pozzetto termometrico.

La profondità di immersione della sonda è variabile.

Esempio di montaggio: termocoppia con pozzetto termometrico in metallo

Versioni AKK, AK e BK

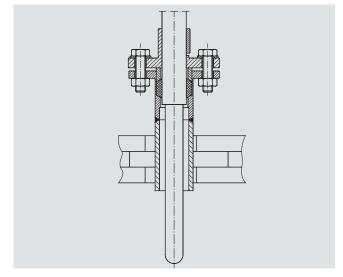
Non a tenuta di gas

Una flangia di arresto è sufficiente, una flangia di accoppiamento non è necessaria. La flangia di arresto è regolabile sul tubo di supporto ed è assicurata con un morsetto.

Pertanto, la profondità di immersione è variabile entro i limiti della lunghezza del tubo di supporto e può essere regolata facilmente sul punto di montaggio.

A tenuta di gas fino a 1 bar 1)

È necessario un manicotto filettato o una combinazione di flangia di arresto / flangia di accoppiamento.


Manicotto filettato:

Questo è assicurato nel tubo di supporto con un morsetto. Se viene allentato, è possibile la regolazione sul pozzetto termometrico. Pertanto, la profondità di immersione della sonda è variabile entro i limiti della lunghezza del tubo di supporto e può essere facilmente regolata sul punto di montaggio.

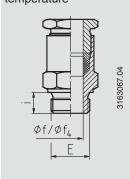
Flangia di arresto / flangia di accoppiamento: Viene sigillata e fissata con un morsetto tra la flangia di accoppiamento e il tubo di supporto in metallo.

1) vedere "Note sulla selezione e il funzionamento di pozzetti termometrici"

Esempio di montaggio: termocoppia con pozzetto termometrico in ceramica

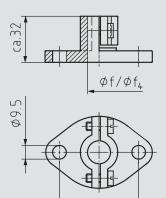
Note d'installazione per pozzetti termometrici in ceramica

Il materiale in ceramica C 799 è solo in parte resistente ai cambi di temperatura. Uno shock termico può pertanto creare facilmente crepe da tensione interna e di conseguenza danneggiare il pozzetto termometrico in ceramica. Per tale ragione i termometri con pozzetti termometrici in ceramica C 799 devono essere preriscaldati prima dell'installazione ed essere quindi immersi lentamente nel processo.


A seconda delle temperature ambiente e del processo presenti, questa procedura è consigliata anche per altri materiali ceramici.

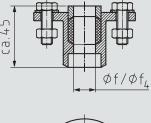
Oltre alla protezione da stress termico, i pozzetti termometrici in ceramica devono essere protetti anche dagli stress meccanici. Tali condizioni di stress danneggiante sono causate da forze di flessione che agiscono in posizione d'installazione orizzontale. Quindi, con installazione orizzontale e, secondo il diametro, la lunghezza nominale e l'esecuzione, dovrebbe essere fornito sul posto dal cliente.

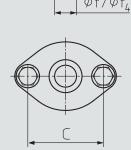
La nota relativa ai problemi causati da forze di piegatura si applica anche nel principio ai pozzetti termometrici in metallo.

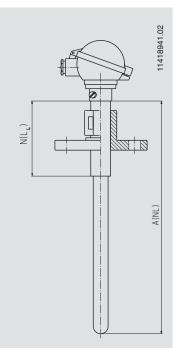

Attacco al processo

Manicotto filettato regolabile, a tenuta di gas fino a 1 bar Guarnizione: senza amianto, fino a max 300 °C, su richiesta possibili maggiori temperature

Materiale: Acciaio al carbonio o 1.4571 acciaio inox


Flangia di arresto conforme a DIN EN 50446 regolabile




Materiale: Acciaio al carbonio o ghisa malleabile, altri a richiesta

Una flangia di accoppiamento può essere usata solo in congiunzione con una flangia di arresto regolabile,

a tenuta di gas fino a 1 bar Guarnizione: senza amianto

Manicotti filettati selezionabili

Versione	Pozzetto termometrico			Attacco al processo
	Ø esterno	Ø f/f ₄	i min.	E
AM AMK	22	22,5	20	G 1, 1 NPT, G 1½
BM BMK	15	15,5	20	G ½, G ¾, G 1, 1 ½ NPT, M20 x 1,5, M27 x 2

Altre filettature su richiesta

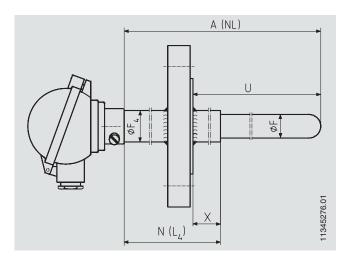
Manicotti filettati selezionabili

Versione	Pozzetto termometrico	Dimensioni in mm		Attacco al processo
	Ø esterno	Ø f/f ₄	i min.	E
AK	32	32,5	30	G 11/4
	22	22,5	20	G 1, 1 NPT
BK	15	15,5	20	G ½, G ¾, G 1

Altre filettature su richiesta

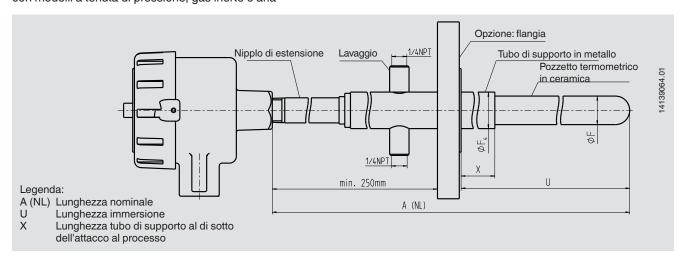
Flange di arresto selezionabili

Versione	Pozzetto termometrico		nsioni in mm
	Ø esterno	Ø f/f ₄	C (distanza dall'asse del foro)
AM AMK	22	22,5	70
BM BMK	15	15,5	55


TC80 con connessione a flangia saldata fissa

Le flange possono essere specificate in varie misure nominali, campi di pressione e materiali.

Come standard, la flangia è saldata usando una saldatura d'angolo su due lati, sul tubo di estensione metallico o sul pozzetto termometrico esterno metallico.


Flange di arresto selezionabili

Versione	Pozzetto termometrico	Dimensioni in mm		
	Ø esterno	Ø f/f ₄	C (distanza dall'asse del foro)	
AK	32	32,5	70	
	22	22,5	70	
ВК	15	15,5	55	

Versioni su misura

In aggiunta, per applicazioni particolarmente insolite o critiche, offriamo termocoppie per alte temperature con versioni speciali. Queste versioni possono essere realizzate con modelli a tenuta di pressione, gas inerte o aria compressa, raffreddamento flangia. I pozzetti termometrici rivestiti per applicazioni specifiche sono anch'essi possibili, così come il rivestimento in platino.

Note sulla selezione e il funzionamento di pozzetti termometrici

I pozzetti termometrici devono essere considerati stagni al gas conformemente agli standard DIN EN 50446. Una diffusione del gas dal processo nel sensore non è ammessa, soprattutto alle alte temperature.

Di conseguenza, la resistente del materiale della termocoppia nei confronti del fluido deve essere considerata esplicitamente.

La responsabilità per la scelta del materiale per il funzionamento sicuro di sonda/pozzetto termometrico nell'impianto/macchinario è di competenza del cliente/ operatore.

WIKA può limitarsi a dare suggerimenti che sono basati sulla propria esperienza in applicazioni simili. La tabella seguente non vuole essere esauriente. Tutte le informazioni non sono vincolanti e non rappresentano caratteristiche garantite. Dovrebbero essere testate completamente dal cliente usando le condizioni della rispettiva applicazione.

Resistente quando in contatto con gas

N. del	N. AISI		Resistente contro			
materiale			gas solforati		gas azotati, a basso	Carburizzazione
			ossidante	riducente	ossigeno	
1.0305	-	550	Bassa	Leggera	Fluido	Leggera
1.4571	316Ti	800	Leggera	Leggera	Fluido	Fluido
1.4762	-	1.200	Molto alta	Alto	Leggera	Fluido
1.4749	446	1.150	Molto alta	Alto	Leggera	Fluido
1.4841	310/314	1.150	Molto leggera	Molto leggera	Alto	Leggera

Funzionamento con gas

N. del materiale	Campi di applicazione
1.0305 (St35.8)	Forni per tempra per impianti di trattamento termico, galvanizzazione e officine di stagnatura, tubazioni con miscela aria-polvere-carbone in centrali a vapore.
1.0305 smaltato (St35.8 smaltato)	Impianti per desolforazione dei fumi, metallo antifrizione (bianco), fonderie di piombo e stagno
1.4762 X 10 CrAISi 25	Gas di combustione, forni per cemento e ceramica, impianti di trattamento termico, forni di ricottura
1.4749 X 18 CrNi 28	Canne fumarie, forni per tempratura
Kanthal Super (disiliciuro di molibdeno)	Industria del vetro e della ceramica, liquefazione del carbone, inceneritori di rifiuti
1.4841 X 15 CrNiSi 25-21	Camere di combustione, forni industriali, industria petrolchimica, forni cowper, bagni di cianuro

Funzionamento in impianti fusori

N. del materiale	Campi di applicazione	
1.4841	Alluminio	Fino a 700 °C
1.1003	Magnesio (magnesio contenente alluminio)	-
1.0305	Metallo di babbitt	Fino a 600 °C
1.0305	Piombo	Fino a 700 °C
1.4841	Piombo	Fino a 700 °C
2.4867	Piombo	Fino a 700 °C
1.0305	Zinco	Fino a 480 °C
1.4749	Zinco	Fino a 480 °C
1.4762	Zinco	Fino a 480 °C
1.1003	Zinco	Fino a 600 °C
1.0305	Stagno	Fino a 650 °C
1.4762	Rame	Fino a 1.250 °C
1.4841	Lega di rame-zinco	Fino a 900 °C

Connessione elettrica

Per le connessioni elettriche del trasmettitore di temperatura integrato, vedere le corrispondenti schede tecniche o il manuale d'uso

Codice colore sulla morsettiera

Tipo di sensore	IEC 60584-1		ASTM E230	
	Polo positivo	Polo negativo	Polo positivo	Polo negativo
K	Verde	Bianco	Giallo	Rosso
N	Rosa	Bianco	Arancione	Rosso
J	Nero	Bianco	Bianco	Rosso
S	Arancione	Bianco	Nero	Rosso
R	Arancione	Bianco	Nero	Rosso
В	Grigio	Bianco	Grigio	Rosso

12/2020 IT based on 11/2020 EN

Omologazioni

Logo	Descrizione	Paese
C€	Dichiarazione conformità UE Direttiva CEM 1)	Comunità europea
EAC	EAC (opzione) Compatibilità elettromagnetica 1)	Comunità economica eurasiatica
©	GOST (opzione) Metrologia, tecnologia di misura	Russia
B	KazInMetr (opzione) Metrologia, tecnologia di misura	Kazakistan
-	MTSCHS (opzione) Autorizzazione per la messa in servizio	Kazakistan
(BelGIM (opzione) Metrologia, tecnologia di misura	Bielorussia
	Uzstandard (opzione) Metrologia, tecnologia di misura	Uzbekistan

¹⁾ Solo per il trasmettitore integrato

Certificati (opzione)

Tipo di certificato	Precisione di misura	Certificato dei materiali
Rapporto di prova 2.2	x	Х
Certificato d'ispezione 3.1	x	Χ
Certificato di taratura DKD/DAkkS	х	-

Possono essere combinate tra loro certificazioni diverse.

Per le omologazioni e i certificati, consultare il sito internet

Informazioni per l'ordine

Modello / Testa di connessione / Uscita cavo testa di connessione / Morsettiera, trasmettitore / Tubo di estensione, materiale tubo di estensione / Materiale e diametro del pozzetto termometrico esterno / Materiale e diametro del pozzetto termometrico interno / Attacco al processo / Elemento di misura / Numero elementi di misura / Valore di tolleranza / Sezione filo degli elementi / Dettagli sulla lunghezza / Certificati / Opzioni

© 12/2001 WIKA Alexander Wiegand SE & Co, tutti i diritti riservati.
Le specifiche tecniche riportate in questo documento rappresentano lo stato dell'arte al momento della pubblicazione.
Ci riserviamo il diritto di apportare modifiche alle specifiche tecniche ed ai materiali.

Scheda tecnica WIKA TE 65.80 · 11/2020

Pagina 12 di 12

www.wika.it